A Locally Limited Indoor Location-Based Service for Privacy-Aware Location Sharing

Bachelor's Thesis
Lukas Murmann
Thursday, October 20, 2011
Abstract

At the VMI group since March - What are my results

MMensa Ubiversity Field Study Thesis
Outline

• Problem Domain LBS Outdoors and Indoors

• Ubiversity Indoor Location Sharing

• Field Study Goal, Execution, Results

• Conclusion

• Q&A
Related Location-Sharing Services

Foursquare
- Gamification
- Checkin only

Facebook Places
- Checkin
- Social

Google Latitude
- Continuous tracking
- Location History
- Now also: Checkin
Common Building Blocks of Outdoor LBSs

Mapping

- Google Maps
- OpenStreetMap

Localization

- Cell Towers
- GPS
- WiFi

Places of Interest

- Google Places
- Many POI databases (Cafés, Restaurants, ...)

Images: office.com
No Building Blocks Available For Indoor Services

Mapping
- Google Maps
- OpenStreetMap

Localization
- Cell Towers
- GPS
- WiFi

Places of Interest
- Google Places
- Many more Geocoders

→ There is a need for reusable indoor service building blocks
General Architecture

Android Clients

User Interaction
Maps
Lists
Manual Checkin

Sensors
WiFi
NFC
QR-Code

Django Backend

POI Data
Rooms
Buildings
Fingerprint DB

Social Data
Accounts
Friend Lists
Permissions

Sources: office.com, djangoproject.com, android.com, python.org
Checkin-Based Self-Training Localization

Online Training
1. Manual Checkin at POI
2. Send WiFi Fingerprint to Server
3. Server stores (POI, FP) tuple

Localization
1. Send WiFi Fingerprint to Server
2. Server calculates similarity to reference fingerprints
3. List of most probable POIs is returned

→ No need for initial training phase
→ Outdated training data gets continuously updated
→ Deployable wherever enough WiFi APs exist
Mapping Tool

- User Locates three Pins
- Tool solves linear equation
- Calculates Map Tile's
 - Translation
 - Rotation

- On Device: Combine several tiles to a single map
Ubiversity's most important POIs are TUM rooms

- Read Room Data from TUMOnline (25,000+ Rooms)
- Store most important data locally on device
- Synchronize full data set on server

- Django → SQLite export tool exists.
- Make RoomDB available as Android Content Provider
The Ubiversity App Showcases those Building Blocks

See Friend's Checkins

Check In at TUM

Combined Map View

A Locally Limited Indoor Location-Based Service for Privacy-Aware Location Sharing – Lukas Murmann
The Field Study

Does a local web service like Ubiversity have a less severe privacy impact than global, commercial services?

Pre Survey
Questions on experience with related services

Test Phase
Participants used Ubiversity for 2-3 weeks

Post Survey
What was the perceived value? Were there privacy implications?

Interviews
Personal interviews with selected participants
Study Evaluation

Location-Sharing may be even more useful in single-campus deployments
• Short distances

Location sharing has high dependency on network effects
• Challenge for both, field study and real product

Very positive feedback regarding privacy impact
• No commercial use
• Local scope
• Less connectedness

→ Interviews and post survey suggest that users feel less reluctant to share location information on a platform with smaller scale.
Conclusion

Contributions by this work

Reusable components for indoor LBS
Privacy-aware location sharing on campus
Field study on possible barriers for LBS adoption

→ Thank you for your attention
A Locally Limited Indoor Location-Based Service for Privacy-Aware Location Sharing – Lukas Murmann
User study concluded

Saturday, September 10 2011 - Lukas Murmann

After approximately one month of online time, the Ubiversity user study has now come to an end.
I would like to thank all participants of the study. Your feedback has been a valuable contribution to my thesis which I should now be able to finish during the next weeks.

This site will soon receive some updates and layout changes and become archive and documentation of the Ubiversity-App and my thesis work in general.

v1.0 - User Study

Wednesday, August 3 2011 - Lukas Murmann
MMensa App Contributed to VMI Mensa

A Locally Limited Indoor Location-Based Service for Privacy-Aware Location Sharing – Lukas Murmann
Localization Algorithm in Pseudo Code

```c
struct RssiTuple{
    string mac_addr
    int rssi
}

float calculateSimilarity(List<RssiTuple> fp_a, List<RssiTuple> fp_b) {
    float similarity = 0.0

    foreach mac_addr that appears in both fingerprints {
        rssi_a = rssi of mac_addr in fp_a
        rssi_b = rssi of mac_addr in fp_b

        distance = abs(rssi_a - rssi_b)

        if(distance == 0)
            similarity += 2.0
        else
            similarity += 1 / distance
    }
    return similarity
}
```